35 research outputs found

    On chip control techniques for single chip CMOS video cameras

    Get PDF

    Enhancing Effect of Glycerol on the Tensile Properties of Bombyx mori Cocoon Sericin Films

    Get PDF
    An environmental physical method described herein was developed to improve the tensile properties of Bombyx mori cocoon sericin films, by using the plasticizer of glycerol, which has a nontoxic effect compared with other chemical crosslinkers. The changes in the tensile characteristics and the structure of glycerolated (0–40 wt% of glycerol) sericin films were investigated. Sericin films, both in dry and wet states, showed enhanced tensile properties, which might be regulated by the addition of different concentrations of glycerol. The introduction of glycerol results in the higher amorphous structure in sericin films as evidenced by analysis of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectra, thermogravimetry (TGA) and differential scanning calorimetry (DSC) curves. Scanning Electron Microscopy (SEM) observation revealed that glycerol was homogeneously blended with sericin molecules when its content was 10 wt%, while a small amount of redundant glycerol emerged on the surface of sericin films when its content was increased to 20 wt% or higher. Our results suggest that the introduction of glycerol is a novel nontoxic strategy which can improve the mechanical features of sericin-based materials and subsequently promote the feasibility of its application in tissue engineering

    The Optimization of Ti Gradient Porous Structure Involves the Finite Element Simulation Analysis

    Get PDF
    Titanium (Ti) and its alloys are attracting special attention in the field of dentistry and orthopedic bioengineering because of their mechanical adaptability and biological compatibility with the natural bone. The dental implant is subjected to masticatory forces in the oral environment and transfers these forces to the surrounding bone tissue. Therefore, by simulating the mechanical behavior of implants and surrounding bone tissue we can assess the effects of implants on bone growth quite accurately. In this study, dental implants with different gradient pore structures that consisted of simple cubic (structure a), body centered cubic (structure b) and side centered cubic (structure c) were designed, respectively. The strength of the designed gradient porous implant in the oral environment was simulated by three-dimensional finite element simulation technique to assess the mechanical adaptation by the stress-strain distribution within the surrounding bone tissue and by examining the fretting of the implant-bone interface. The results show that the maximum equivalent stress and strain in the surrounding bone tissue increase with the increase of porosity. The stress distribution of the gradient implant with a smaller difference between outer and inner pore structure is more uniform. So, a-b type porous implant exhibited less stress concentration. For a-b structure, when the porosity is between 40 and 47%, the stress and strain of bone tissue are in the range of normal growth. When subject to lingual and buccal stresses, an implant with higher porosity can achieve more uniform stress distribution in the surrounding cancellous bone than that of low porosity implant. Based on the simulated results, to achieve an improved mechanical fixation of the implant, the optimum gradient porous structure parameters should be: average porosity 46% with an inner porosity of 13% (b structure) and outer porosity of 59% (a structure), and outer pore sized 500 μm. With this optimized structure, the bone can achieve optimal ingrowth into the gradient porous structure, thus provide stable mechanical fixation of the implant. The maximum equivalent stress achieved 99 MPa, which is far below the simulation yield strength of 299 MPa

    An inverse boundary value problem from semiconductor modeling.

    No full text
    In this thesis, we investigate an inverse boundary value problem arising from the study of semiconductor transistors. The problem is to recover a number of parameters in the coefficient function from the knowledge of the solution at some accessible boundary. We first review the mathematical models that describe the current flow in a transistor into an integrated circuit. We then obtain the theoretical results pertaining to this inverse problem, such as existence, monotonicity, differentiability, asymptotic properties and identifiability. We also formulate the partial differential equation model into a boundary integral equation model. For the differential equation model, we employ both the finite difference method and finite element method to compute the numerical results. For the integral equation model, we obtain the numerical results by adopting a wavelet collocation method. Several iteration schemes are designed and implemented for parameter identification for both models. Examples are presented to illustrate the numerical results. Finally, some suggestions for future research in this topic are given. This work was partially supported by US Army Research Office Grant DAAG 55-98-1-0261

    A Fast Collocation Method for an Inverse Boundary Value Problem

    No full text
    In this paper, we present an implementation of a fast multiscale collocation method for boundary integral equations of the second kind, and its application to solving an inverse boundary value problem of recovering a coefficient function from a boundary measurement. We illustrate by numerical examples the insensitive nature of the map from the coefficient to measurement, and design and test a Gauss–Newton iteration algorithm for obtaining the best estimate of the unknown coefficient from the given measurement based on a least-squares formulation. Copyright © 2004 John Wiley & Sons, Ltd

    Developmental trend of digital broadcasting in China

    No full text

    Emergency Warning and Bidirectional Communication via Digital Audio Broadcast

    No full text

    Structural Design and Finite Element Simulation Analysis of Grade 3 Graded Porous Titanium Implant

    No full text
    The metal titanium is often used as a dental implant material, and the elastic modulus of solid titanium implants does not match the biological bone tissue, which can easily produce a stress shielding effect and cause implant failure. In this paper, a three-level gradient porous structure implant was designed, and its mechanical and biological adaptability were studied by finite element simulation analysis. Combined with the comprehensive evaluation of the mechanical and biological properties of implants of various structures, the analysis found that a porous implant with porosity of 59.86% of the gradient was the best structure. The maximum equivalent stress of this structure in the mandible that simulated the oral environment was 154.34 MPa, which was less than half of its theoretical compression yield strength. The strain of the surrounding bone tissue lies in the bone compared with other structures, the proportion of the active state of plastic construction is larger, at 10.51%, and the fretting value of this structure and the bone tissue interface is the smallest, at only 10 μm

    Speciation, Fate and Transport, and Ecological Risks of Cu, Pb, and Zn in Tailings from Huogeqi Copper Mine, Inner Mongolia, China

    No full text
    Tailings collected from the tailing reservoir at Huogeqi Copper Mine, located in Inner Mongolia, China, were used in a leachate study to evaluate the acid potential, neutralization potential, and possibility for producing acid mine drainage (AMD) from the site. The speciation of Cu, Pb, and Zn contained in the tailings was also determined during the leachate study to further access the potential migration abilities of these metals. The results showed that the tailings did not produce significant AMD as the pH of the leachate ranged from 7 to 9 and decreased with time. The Cu, Pb, and Zn concentrations were high, ranging from 439.1 to 4527 mg/kg in the tailings and from 0.162 to 7.964 mg/L in the leachate, respectively. Concentrations of metals in the leachate and tailings were positively correlated. Over 60% of the Cu in the tailing samples existed in an oxidizable form. Most of the Pb also existed in its oxidized form, as did the silicate and Zn. Metals usually have higher mobility in their exchangeable and oxidizable forms and as such represent a higher potential risk to the environment. Results of risk assessment code also revealed that metals in tailings exerted medium to high risks to the environment
    corecore